On the Riesz Almost Convergent Sequences Space
نویسندگان
چکیده
منابع مشابه
On the Spaces of $lambda _{r}$-almost Convergent and $lambda _{r}$-almost Bounded Sequences
The aim of the present work is to introduce the concept of $lambda _{r}$-almost convergence of sequences. We define the spaces $fleft( lambda _{r}right) $ and $f_{0}left( lambda _{r}right) $ of $ lambda _{r}$-almost convergent and $lambda _{r}$-almost null sequences. We investigate some inclusion relations concerning those spaces with examples and we determine the $beta $- and $gamma $-duals of...
متن کاملStrongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کاملOn Lacunary Almost Convergent Sequences
The purpose of this paper is to define and study the spaces [ĉ,M, p](∆u , q, s), [ĉ,M, p, ] θ 0(∆ m u , q, s) and [ĉ,M, p, ] θ ∞(∆ m u , q, s) of lacunary convergent sequences. We also study some inclusion relations between these spaces and some properties and theorems. 2000 Mathematics Subject Classification:40D05, 40A05. 1.Introduction and definitions Let w denote the set of all complex seque...
متن کاملm-Ary Hypervector Space: Convergent Sequences and Bundle Subsets.
In this paper, we have generalized the definition of vector space by considering the group as a canonical $m$-ary hypergroup, the field as a krasner $(m,n)$-hyperfield and considering the multiplication structure of a vector by a scalar as hyperstructure. Also we will be consider a normed $m$-ary hypervector space and introduce the concept of convergence of sequence on $m$-ary hypernormed space...
متن کاملConvergent Sequences in Complex Unitary Space
For simplicity, we adopt the following convention: X is a complex unitary space, x, y, w, g, g1, g2 are points of X, z is a Complex, q, r, M are real numbers, s1, s2, s3, s4 are sequences of X, k, n, m are natural numbers, and N1 is an increasing sequence of naturals. Let us consider X, s1. We say that s1 is convergent if and only if: (Def. 1) There exists g such that for every r such that r > ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2012
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2012/691694